Orthogonal Functions

We shall now consider some of the important definitions regarding orthogonal
functions.

(i) The inner product or scalar product of two functions Fix) and ({x)
defined in the interval a £ x £ b, denoted as (F, G) or (FIG), is

b
(F.G) = [Fx)G(x)dx
d
The notation (F,G) for the scalar product of functions F(x) and Gix) is

sometimes referred to as bracket notation.

{(ii) Two functions F{x) and G(x) are orthogonal if their inner product is
ZETO,

13
(F,G) = jF*{x}Gr_xm —0

(iii) The norm of a function is defined by square root of inner product of the
function with itself

b 172
N = (F, F)? = |ij|.F{le|2 dx]

(iv) A function is nrormalized if its norm is unity.
s L4
2
N = (F, )\ = |ij|F{x]| dx]
a
(iv) A function is normalized if its norm is unity.

b 142
(F, F)'? = !ﬂF{x}Fdx] =1

or
-]
(F, F) = IF*{I}F(x}dx = .

where the integral on the right-hand side is called the normalization
integral.



{v) Functions that are orthogonal and normalized are called orthonormal
Suncrions. .

(F,F)=468: ij=12 .

(vi) A set of functions F (x), F,(x), F,(x), ... is linearly dependen: if a
relation of the type

Yok =0

¢

exists, where the ¢'s are not all zero. Otherwise they are linearly
independent.

(vii) A set of linearly-independent functions F\(x), F,(x), ... is complete, if
there is no other function which falls in the set of linearly-independent
functions.

The expansion theorem states that any function ¢ (x) defined in the same
interval can be expanded in terms of the set of linearly-independent functions
as

o) = ¥ e F(x)

The complete set need not be orthonormal.

The expansion of a function in terms of a complete orthonormal set of functions
is of fundamental importance in quantum mechanics.

LINEAR OPERATOR

An gperator can be defined as the rule by which a different function 15 obtained
from any given function. Therefore, in

g = A f)
the operator A operating on f(x) gives the function g(x). So, in
gx) = A flx) = F)]?
the operator squares the function f(x). The operator A differentiates the function

fix) with respect to x if

d
gx) = A fix) = — f(x)
dx

An operator 15 said to be linear if it satisfies the relation
Ale, filx) + e, (0] = ¢ Afj(x) + c,Afy(x)



where c and ©, are constants. In

d d d
g(x) = E[flfl{-r} + oy fr(x)] = ':?]Efl{x} +6 Efz{x}'

the operator (d/dx) is linear. The operator which squares a function is not linear
since

A [y [t + e, 4] = [e, fi{x) + ¢, fHi)F
=cifl+ G fi+ 200,01 1,
+ ﬂ]ﬁ + (.'zfi

Linear operators are the most important ones in quantum mechanics and
therefore we shall consider only such operators.
The sum and difference of operators A and B are defined by:

(A £ Byfix) = Afix) + Bfix)

Addition is commutative:

- -

A+B=R+A
Addition 15 associative:

A+ B +C=A+(B+ O

B

The product of two operators A and
AB fix)

is defined by:
ALBf()]

Multiplication is associative:
AB + C)f(x)

(AB + AC)f(x)
Commutator of operators A and B. denoted by [Aﬁ] is defined as:
[A. Bl = AB - BA

It follows that
[A, B] = - [B, A}

Ifﬁé flx) = BA fix), that is [A.B] = 0, A and B are said to commute. If
A:B‘ + BA =10, 4 and B arc S&jd Lo amticontmute.
B is usually denoted as [A, Bl,.

HERMITIAN OPERATOR

Let us consider two arbitrary functions y_(x) and W (x). The operator A is said
to be Hermitian if



In bracket notation

{Frm' Awn } = {-4#5‘”1 'Fn} = ['Fn‘- Aﬁ"m }‘
An operator is said to be anti-Hermitian if

{llum" Awﬂ} == {AWm" Ilu.u} == {‘Fn" A‘Fm}*

Two important theorems regarding Hermitian operators which we use
throughout quantum mechanics are the following.

Theorem 1 The eigenvalues of Hermitian operators are real.
Proof Consider a Hermitian operator A. Its eigenvalue equation be
Ay, = a,y,
Taking inner product with y . we get
(y, Ay) =alw, v)=a,
Since A is Hermitian, we have
(W, Aw) = Ay, w)=al(y,y)=ar

It follows that a, = a¥ which is possible only when
a, is real. Real cjgc!ﬁralu&s of Hermitian operators play a very important role
in quantum mechanics.

Theorem 2 Any two eigenfunctions of a Hermitian operator that belong two
different eigenvalues are orthogonal.

Proef Let y_ and w_be the eigenfunctions of the operator A
comresponding to the eigenvalues a_ and a, respectively. Then
Awm =a,V Awn = a,y,

we obtain

{lryln' Al'b"m:l = am{ U:|rr:|" IF:IH:'

Since operator A is Hermitian,
{Awn‘ wm} = II'I].lcl'r1l"¥""‘r|-’ I'l:|lru'1|} or an{wn‘ wm} = am{ wﬂ1 wm}

or

{aﬂ - am} {IIH:H-‘ wﬂ.l} = ﬂ
As a #a_, we have

(¥, v, =0

Hence, the eigenfunctions w_ and w_ are orthogonal.



Schmidt Orthogonalization Procedure

Let w; and w, be two normalized eigenfunctions of the Hermitian
operator A having the same eigenvalue a. Then

Ay, = ay, mprj. = ay,
The linear combination of y, and y is given by
Vi = ¥ + 6
where ¢, and ¢, are constants. Also,
Aa,ur* = A{r‘[lpl’j + L'z'gli:r.} = a{c]wr. + "z“{.}

that is, y, is also an cigenfunction of the operator A with the same eigenvalue a.
We assume that

(v, w) =0 and (y, w) =1

Then
(W, w) =0 gives ¢, =-cy, Ip}]
and
(y,. w) =1 gives ¢l +c+ ¢l W) + (g, w)l =1
The constants are assumed to be real. From Eqgs. we have
('1 — ; aﬂd r:'l = — Lf}z
J1 =y w))F JU= vl
Hence

W‘f _“-'Fh W_,:]WJ

W, = .
Vi-| v

This w, is a normalized eigenfunction of the operator A corresponding to the
eigenvalue a. It is orthogonal to w. This procedure is a case of Schmidr
orthogonalization procedure for systems having two-fold degeneracy. Similar
procedure can be followed for higher order degenerate cases.




POSTULATES OF QUANTUM MECHANICS

Postulate 1: Wave function

The state of a system having n degrees of freedom can be completely specified
by a function ¥ of coordinates g, q,, ..., g, and time ¢ which is called the wave
funcrion or state function or state vector of the system. ¥ and its derivatives
must be continuous, finite and single valved over the domain of the variables
of ¥. All possible information about the system can be derived from this wave
function.

The wave function ¥ as such is not an observable, but in some way it is
related to the presence of the particle.

The representation in which the wave function
is a function of coordinates and time is called the coordinate representation.
In the momenium representation, the wave functions are functions of the
momentum components and time. '
the coordinate representation,

Postulate 2: Operators

Classical observables and their quantum mechanical operators

Cperator (v coordinate

Criservable Classical form represemtalion
Coordinates XV I LYz
Function of coordinate Sfix, v ) fix, vo 2
M Ld  d 4

omentum compoents P P P —fthi—, —fh—, —ih—
S dx dy dz
Momentum 1] iV
d
E E ih=
Ergy Y

Operators representing some of the other dynamical variables take the
following form:

Kinetic energy operator. For a particle of mass m and momentum p, the
kinetic energy

T=——(p? +p +p?)
2m : -

E[f J? f]: W

T=—|—+— + —
2max® @' a9



Hamiltonian operator. For a particle of mass m moving in a potential
Vix. v, 2), the Hamiltonian

2
H=2_ vy
2m

or

e

H = —'ﬁ—_?l + Vix, v,z
2m

Postulate 3;: Expectation Value

When a system is in a state described by a wave function ¥, the expectation
value of any observable A is given by

{A) = ? AW dr

where A in the integral is the operator associated with the observable A.
~ the wave function ¥ is assumed to be normalized. If the wave
function is not normalized

T YA dr
(A= ——
jqﬁp dr

the sandwiching of the operator between
¥* and ¥ is a necessity.

Postulate 4: Eigenvalues

Often an operator A operating on a function multiplies the function by a constant.
Awix) = ayw(x)
where a is a constant with respect to x, The function wix) is called the
eigenfuncrion of the operator A commesponding to the eigenvalue a. In
de®*
dx

¢ is an cigenfunction of the operator d/dx corresponding to the eigenvalue k.

=ke"



Postulate 5: Time Development of a Quantum System

The time development of a quantum system can be described by
the evolution of state function in time by the time-dependent Schrodinger
equation

J¥(r, 1
ot

where H is the Hamiltonian operator of the system which is independent of
time.

This procedure of considering the state function depends on coordinates
and time and the operator to be independent of time is called the Schridinger
picture or Schridinger representation.

ih

= HYWr, 1)

SIMULTANEOUS MEASURABILITY OF OBSERVABLES

We have been discussing the measurement of one observable at a time. If two
observables are simultaneously measurable in a particular state of a given
system, then the state function is an eigenfunction of both the operators. Two
ohservables are said to be comparible, if their operators have a common set of
eigenfunctions. The following two theorems indicate the connection between
compatible observables and commuting operators,

Theorem Operators having common set of eigenfunctions commute.
Proof Consider operators A and B with the common set of eigenfunctions
w.i=1,2,.. as
Ay, = a;y, and By, = by,
Then
ABy, = Albw) = bAy,

a Ib W
and

BAy, = Blay) = aBy, = aby,
Since ABy. = BAy. A commutes with B. Hence the result.



Theorem —  Commuting operators have common set of eigenfunctions.

Proof Consider two commuting operators A and B. The eigenvalue
equation for A be

Auﬁ:ar.lpfr i=1.2,
Operating both sides from left by B
BAy, = aBy,
Since B commutes with A
A(By) = a(By)

That is, By, 1s an eigenfunction of A with the same eigenvalue a. If A has only
nondegenerate eigenvalues, By, can differ from w; only by a multiplicative
constant, say b,

By, = by,

In other words w, is a simultaneous eigenfunction of both A and B.

DIRAC’'S NOTATION

The state of a system can be represented by a vector called state vector in the
vector space. Dirac introduced the symbol | ), called the ket vector or simply
ket to denote a state vector which will take different forms in different
representations. To distinguish the ket vectors corresponding to different states,
a label is introduced in the ket. Thus, the state vector corresponding to w (r)
is denoted by the ket |a). Comresponding 1o every vector, la) is defined a
conjugate vector |a)* for which Dirac used the notation {al which is called a
bra vector or simply bra. The conjugate of a ket vector is a bra vector and vice
versa. A scalar in the ket space becomes its complex conjugate in the bra
space. The bra—ket notation is a distorted form of the bracker notation. Thus,
the bracket symbol (|} is distorted to { | and | } in the Dirac notation. The
words ‘bra” and ‘ket’ were derived from the word bracket by dropping the
letter ‘c'.

Operation by an operator A on a ket vector produces another ket vector.

Ala)y = la"}
Operation on a bra vector from the right by A gives another bra vector
(blA = {b"]

In terms of bra and ket vectors, the definition of the inner product of the state
vectors y_and y, takes the form

(v, w) = J'w: w, dt = (alb)
The norm of a ket la), denoted by {ala) is a real nonnegative number. That is

{alay = 0



The equality sign holds only if la} = 0. The ket la} is said to be normalized
if
{alay = 1

Kets la) and 1b) are orthogonal if
{alby = 0
The orthonormality relation is expressed as
{aja) = &,
In this notation, the condition for an operator to be Hermitian is
{alAlB) = {blAla)*

Compared to conventional notation, Dirac's notation is compact.

EQUATION - OF MOTION

The state vector changes with time but the operator remains constant
(Schridinger representation or Schridinger picture),

Schrbdinger Representation

We are very familiar with the wave mechanical approach to quantum mechanics
and therefore it is appropriate to start with the Schridinger representation.

in this picture the state vectors are time-dependent
kets Il;fg{r]} and the operators are constants in time. The equation of motion is
then an equation for [y (1)), the subseript *s” is to indicate Schridinger picture.
The ket ly (1)} varies in accordance with the time-dependent Schrédinger
equation

fﬂ%hﬁ',(rl} = H|p,(n)

As the Hamiltonian H is independent of time, Eq. can be integrated to
give

iHt
i

II;i"sl:!'}} = exp [ ]Iyrs{ﬂ]l}

Here, the operator exp (—iHih) is defined as

exp (_%] _ i (—iH1 I k)"

n!

— ]



Equation reveals that the operator exp (—iHt/h) changes the ket ly (0))
into ket Igfsl[.r]l}. Since H is Hermitian and r is real, this operator is unitary and
the norm of the ket remains unchanged. The Hermitian adjoint of Eq.

1%

—ih— {F”,UH ':'F'g“}|H1 = {JFJI'”H

whose solution is

VACIERUAGILH [%]

Next we consider the time derivative of expectation value of the operator A
The time derivative of {AJ is given by

{ o) = {wnm |y (1))

where A_is the operator representing the observable A. Replacement of the
factors

d d
E|W§.[”} and E(WJFH

using Eqs.

d

LAY = . wlaH - HAJy.0) + (10| 22|y o)

or
d A
4a) = & I+ (%)
If A, has no explicit dependence on time, we get
d
h Ay = (A
in 2 (A) = [A, H]

If the operator A, commutes with the Hamiltonian, it is a constant in time.



Dirac Delta Function

The Dirac delta function 8(x) is not a function in the usual mathematical sense. In the
normal sense a function will have a definite value for each point in its domain. The
delia function §{x) acquires a meaning only when it appears in an integral. The
Dirac delta function 8(x) is defined by the conditions:

80x) = 0, x20
v e, x=0 (C.1)
such that
j dixide=1 (C.2)

By making a change of origin, we can write Eq. (C.1) as

( X#&X
Slx—x)=1 o :
(x —xy) L =0 (C.3)
such that
I dix—xg)de=1 (C.4)

—m

If fix) is an arbitrary function, well defined at x =0, then the integration of f(x) with
the delta function selects the value of f{x) at the origin

If[xlﬁ{xj de = f(() (C.5)

Here, the integration is over the domain in which f(x) is defined, provided the range
includes the origin. It follows from Eq. (C.2) that

[r@08-x) dv=rox (C.6)

where the range of integration must include the point x =

Generalization of Dirac delta function 1o three-dimensional space is
straightforward. If r is the position vector with components x, ¥, z, then the three-
dimensional delia function:

Sr—ry) = dix—xp) Sly—w) dlz—z) (C.7)
such that

j fird (r-rg) dr=firy) (C.8)

where the range of integration includes the point (xg, vp, 2o).



Properties of the Delta Function
i1} The delta function is an even function: & (-x) = § (x)
(ii) xd(x)=0
{iii) xdix—xpd=xy dix—xy)
(iv) fix) & (x = xg) = filxg) & (x = xp)

v) &lax)= i a(x), a=0 (C.9)

1
2|a]

(vii) jﬁ{x- b) &(a-x)dx=58(a—b)

(vi) Sixi—al) = [&(x=a)+ &ix+a)]

Representation of Delta Function

Mathematically, delta function can be considered as the limit of a function which
becomes more peaked at the origin when a parameter approaches zero,



Commutator Algebra

The commutator of two operators A and B, denoted by [A. B), 1s defined by

[, Bl= AB - BA,
and the anticommutator { A, B ] 1s defined by
(4. By=AB + BA.

Two operators are said to commute if their commutator is equal to zero and hence AB = BA.
Any operator commutes with itself: o
[4, 4] =0.

Note that if two operators are Hermitian and their product is also Hermitian, these operators
commute:

and since (.‘ié)'t — AB wehave AB = BA.

Properties of commutators
Using the commutator relation (2.79), we can establish the following properties:
e Antisymmetry: i X
[4, B]=—[B, 4]
e Lineanty:

(A, B+C+D+--]=[A, Bl+[A4, Cl+[4, D] +---

Hermitian conjugate of a commutator:

(. ot =(8t, 4y

Distributivity:

Jacobi identity:

[4.[B. C]1+[B. [C, A]] +[C. [4. B])=0

e Operators commute with scalars: an operator A commutes with any scalar b:

[A. b]=0



Momentum Representation
The basis {| p)] of the momentum representation is obtained from the eigenkets of the momen-
tum operator l.5 3 X
P1p) = BB\
where p is the momentum vector. The algebra relevant to this representation can be easily

inferred from the position representation. The orthonormality and completeness conditions of
the momentum space basis | p) are given by

G150 =oG-5) wmd  [EpipEI=i
Expanding | y) in this basis, we obtain
(v =[dp 101w = [£p¥@) 1 5.
where the expansion coefficient ‘¥(p) represents the momentum space wave function. The
quantity | W(p) |* & p is the probability of finding the system’s momentum in the volume
element @ p located between p and p + dp.

the scalar product between two states is given in the momentum
space by

@1v) = (6] (/ S 1961) 10 = [ o GG
Since i3 | Py = p| p) we have

(p'| B"| p)=p"5(p" ~ p).



